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Rates of convergence of Mean Squared Error of convolution type estimators of
regression functions or density functions in '(,' are derived, employing L I kerncl
functions. The idea is to let the order of the kernel (number of vanishing moments)
tend to infinity with increasing number of observations. In this setting, the rate n I

is achieved if and only if the function to be estimated has a specific property. For a
broad class of functions, the optimal rate is seen 10 be O( ::<2:n ). where
(AIi/e)J" --- 11. (. 14H7 ACi.H..klllic Pie..,..,. Inc.

I. INTRODUCTION

During the last 25 years, estimation of functions has gained considerable
interest in statistics. A classical measure of the performance of such
estimators at a point is the Mean Square Error (MSE). If g(l) is a curve
estimate of a function g(r), the MSE can be decomposed into variance and
bias squared:

Both variam;e and bias of a curvc estimator arc to be kept small, and
usually a compromise has to be found. Keeping the bias small is equivalent
to finding a good deterministic approximation to the function g.

The simplest smoothing and approximation methods of analysis are
those of convolution type; compare with Shapiro [I OJ for an overview.
The function to be smoothed is convolved with a smooth function called
the kernel function. Because of its simplicity, this kernel smoothing method
is widely applied in statistical curve estimation. Let us define kernels of
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194 HANS-GEORG MULLER

order k as kernel functions K with (k - I) vanishing moments which are
contained in

.i? k := {.lE L1([ - I, I]): JI(x) Xl dx

= { I , j = 0, .kl· L I{ [ ~ I I ] )l
0, 0 <j < k, .X. E \ , S

and satisfy Bk(K)= JK(x)xk dx#O.
Discussing purely deterministic approximation by kernels of order k,

assume that g is a bounded measurable function and that glkl exists. We
then obtain by the pointwise saturation theorem [IOJ

L r
I ( t ~ X) J (- I )klimh k g(t)- -K -- g(x)dx =glkJ(t) BdK)--,

h-.O .h h k!
(I)

where h is a scaling factor or bandwidth. Even if g E (g J , where ((;.f denotes
the space of infinitely often differentiable functions, the rate of convergence
remains at hk (saturation). A faster rate can be obtained only by

(A) increasing the order k or

(B) dropping the assumption that the kernel be in L I'

In statistical curve estimation, approach (B) has been taken in a series of
articles concerned with the estimation of smooth densities [2, 3, 6]. There
it is shown that with the Fourier integral kernel K*(x) = (7[x) I (sin x)
which is not in L I , faster rates of convergence of MSE can be obtained
than with L I-kernels if the characteristic function of the curve to be
estimated decreases fast enough. The fastest rate, 11 I, is obtained iff the
characteristic function is compactly supported [3]. This approach,
however, suffers from the drawback that the support of the kernels
employed is necessarily unbounded and therefore these rates are not
attained if the curve to be estimated is of bounded support. This
assumption is always made in the statistical curve-fitting problem to be
outlined below. The problem lies in the fact that there are always boundary
effects which dominate the convergence if kernel and function to be
estimated both have unbounded support. This is reflected in the fact that
the characteristic function of a compactly supported curve decreases only
algebraically of degree p = I and according to Theorem 4.2 of [2J, the
Fourier integral kernel then is not competitive to any L I kernel with k ~ 1.

Therefore, we will be concerned here with approach (A). We apply it to
the curve-fitting problem in the fixed design regression model

Yi=g(t,)+E" i = I, ..., 11, (2)
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where n observations Y; and times of measurement f; = i/n are given and
the unknown smooth regression function g E rtjx ([0, I]) is to be estimated.
The errors (&;) are assumed to be independently and identically distributed
with E& 1 = 0, &i = (12 < 00. The results hold also for other models as well
as for kernel density estimation, but for the sake of simplicity we restrict
the discussion to the model (2). Given fE (0,1), a kth order kernel estimate
of g( f) is defined as

1 "Is, (f-U)g,,(f)=-L Kk -h- duY;,
h i= I ·\1 I

(3)

where h is the bandwidth now depending on n, Kk E jtk := jlk n
Lip( [ - 1, I]) for some k (where Lip denotes the class of Lipschitz-con
tinuous functions) is a kernel function of order k and s; = (2i + 1)/(2n),
i = 1, ..., n - 1, So = 0, S" = 1. In order to avoid boundary effects, we always
assume that h:::; min(t, 1 - f). The estimate (3) can be viewed as a dis
cretization of the convolution integral in (1 ).

For fixed k, observing (I) and approximating sums by integrals, using
the Lipschitz continuity of g and Kk , we obtain for bias and variance of the
estimate (3), assuming h -> °and nh -> 00:

,
(1-

var(g,,(t)) = nh (V(Kd + 0(1 )),

(4 )

(5 )

where V(Kk ) = f K;(x) dx (cf. [I J). By (4), (5) the MSE optimal bandwidth
sequence is seen to be h ~ n 1/(2k + I', and this yields the rate of convergence
MSE ~ n 2k/12k + 1) (for a derivation of this rate in density estimation,
cf. [I J or [9 J). For functions g E rtjk( [0, 1J), this rate is optimal [5, 11]. It
remains the same if g E (f,a ([0, 1]) and a kernel of order k is used.

If we assume g E 'fa'X ([0, I J), there is no corresponding kernel of order
k =X (see Theorem 2.1, below); if we choose any fixed order k < 00, the
rate of convergence will again be n - 2k/(2k + I I. But the rate of convergence
can be improved if we let k -> 00, as the number of observations incre<..ses
(Theorem 3.1, Corollary 3.1). This idea is consistent with practical con
siderations: Since constants in the leading expressions of MSE depending
on the kernel increase with increasing k, the improvement in the rate of
convergence will lead to a smaller MSE only in large samples, and the
larger k is, the larger the sample has to be. For instance, even if we assume
only g E rtj IO( [0, I]), for usual sample sizes of n = 25-100 it is not
reasonable to exploit this smoothness fully by choosing a kernel of order
10; compare also simulation results of Gasser ef al. [4]. Therefore, assum-



196 HANS-GEORG MULLER

ing g E ((," ([0, I]), for any n there will be a MSE optimal finite value for
the order k(n) as there is an optimal bandwidth h for any given k and n.

Assuming certain growth conditions for glk I as k -+ x, we will show in
Section 3 that by letting k(n) -+X (n -+ x) at a specific rate, we obtain a
MSE rate better than any of the rates n ek.lek + II, k fixed. In Section 2 we
investigate the behavior of two classes of kernels of order k as k -+x, in
order to assess the behavior of kernel-dependent constants determining
MSE for large k.

2. ASYMPTOTIC PROPERTIES OF

Two CLASSES OF KER"iILS

We discuss the asymptotic behavior of two classes of kernels. These
kernels with support [-- I, I J are defined as solutions of the variational
problems

i = O..--. JI I. (6)

We consider this problem for JI = 0, I and denote the solution by O-optimal
(or minimum variance) kernels'!k(JI = 0) and by I-optimal (or just
optimal) kernels t/J dfi = I ). In the following, we assume that k is even. The
general variational problem was discussed in [7J and further special
formulas for the cases fl = 0, I were derived in [4]. In order to apply these
formulas, we need an asymptotic approximation for binomial coefficients.

LEMMA 1. (Jk/2 k
)( /e) -+ J2/n as k -+x.

Proo{ Apply Stirling's formula.
The functionals of any kernel K fCC -/Ik that have an influence on MSE arc.

according to (4), (5), V(K):= 11 I Ke(x) dx and Bk(K) := 11 I K(x) x k dx.
The asymptotic behavior of these functionals for the solutions of (6) for

Ii = 0, 1 is given in the following:

LEMMA 2. As k -+X, we ohtain

(i)

(ii)

(iii)

(iv)

(v)

7kIB(/~)I-+ ().
~ k - k Y ~,

Vp:)/k -+ I/n;

2k
+ II Bdt/Jdl-+ y

i 2:

V(t/Jd/k -+ l/n;

JI I t/J~(x)e dx/e(k + 2) -+ 1/(3n).
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Proof: (i) By formula (5), Theorem I of [4 J, we obtain

(
k ) 1(2k)IBk(Ykll = . ..1 ,k/2 1 k

and the result follows from Lemma I.

(ii) By formula (6), Theorem I of [4 J,

k" (k)"V((/~)=2°k+1 k;2

Again, the result follows from Lemma 1.

(iii) Follows in the same way as formula ( 11) of [4 J:

k+l(k)(2
k
k).IBk (lj;dl=2k+1 k/2!

(iv) Follows from formula (12) of [4]:

197

(v) By partial integration, we find that lj;~ is a kernel function satisfy-
mg

·1 {OI lj;~(x)xldx= '
• I -1,

j= 0,2, ..., k}
i= 1

and minimizes II I lj;~(x)" dx according to the definition of lj;k' Therefore,
If~ corresponds to a minimum variance kernel (with V= 1, k'=k+ 1, 11=0
in the notation of [7J). Formula (6) of [4 J yields for this kernel

··1 , k"(k+2)" 1 ( k+2 )
J ,lj;~(x)-dx=3.---:2 2k +' (k+2)/2 '

and the result follows from Lemma I.
Next we show that it is not possible to find a kernel corresponding to the

smoothness of a r(jf function.

THEOREM 1. There is no kernel of order k = XJ, i.e., ,itf : = n/~ I

II; = 0·
Proof: Assume that K y E ,it

f
• It follows that for any k, K.f E ,/Ilk •

According to the definition of the y~ as solution of (6) for 11 = 0, it holds
that I K k(x)2 dx ~ I Y~(X)2 dx for any kernel K k E ,ilk' and therefore
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11
I K x (X)2 dx? JI I Y~(X)2 dx for any k. But by Lemma 2.2(ii), VC~) --+ eM

as k -+ ex., , which implies K x ¢ L 2( [ - 1, 1J). This is a contradiction since
.ttxC Lip( [ - 1, 1]) c L 2( [ - 1, 1]).

3. RATES OF CONVERGENCE OF MEAN SQUARED ERROR

According to Theorem 1, the only possibility to exploit the smoothness
of C(;'" functions with L] kernels is to let k depend on n such that k(n) --+ ex
as n --+ CJ-J. In view of the nearly identical asymptotic behavior of kernels .Cf;
and t/J k according to Lemma 2, we consider in the following only kernels t/J k

that solve (6) for p = I. Considering varying k, we obtain for the bias:

LEMMA 3. Let k =k(n) --+ x and

sup h ~s <x,
IIF

O<t-s<t+s<1. (7)

There exists Sh. k E [t ~ h, t + hJ such that

l'root:

by Lemma 2(iv). Therefore

(8 )

and the result follows from a Taylor expansion of g around t with the
Lagrange remainder term.

As for the variance, we get the following approximation.
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LEMMA 4.

Proof: With mean values IJj, C
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where T denotes total variation. For any function fEJ 6] ([0, I]), T(f) ~
S IF(x)1 dx. Therefore

T(t/ln~2(J t/lk(x f-dx f" (J t/I~(X)2dXf2

= O(k 2
)

by Lemma 2(iv), (v).
Combining Lemmas 2( iii), (iv), 3, and 4, we obtain for the MSE

(observing (8)):

THEOREM 2. Under the assumptions o{ Lemma 3,

b2k k 2

E(gl1(t) - g(t))2 = g(k)(~h.d2 k!2 22k +] (I + o( I)) + nh : (I + 0(1))

(9)

We observe that E(gl1(t) - g(t))2 -> 0 as n -> 00 implies that the O-terms
disappear, since then kl(nh) -> 0 and since the first O-term is o( lin). A con
dition for achieving the rate n ] (which, e.g., is obtained in parametric
regression models, if the model fits the data) is obtained as a consequence
of Theorem 2.

COROLLARY 1. The rate n 1 for MSE (){ gl1(t) is attained iff there exist
k o and bo such that g(kOI( ¢ho.ko) = o.

Proof If the condition is satisfied, we fix k = k o and b = ho for all n. The
bias squared disappears and the variance decreases as n I. If MSE _ n ]
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we must have bias squared ~ II 1 and var ~ 11 I. The latter implies that

there exist k 1 and hi such that sup" k(lI) :s k 1 and inf" h(n) ? hi'
Therefore there exists k o such that infinitely many of the ~h. k can be written
as ~hkll' Further, bias squared ~II 1 requires that gikll)(~hkll)=()(n I),

where h=h(n)E [s,hlJ. Now :h(nl!nE F\J] has a subsequence h* with a

limit ho. Assume that glk ll l
( ~ "II kll) -I O. It follows that lim" . , ~ h' k" = kll

and therefore gl klll( ~ "II k,,) = O.
The condition for achieving the MSE-rate II I is satisfied, e.g., if g is a

polynomial.
In generaL this condition will not be satisfied and the rate II 1 will be

unattainable. The optimal rate of convergence of MSE then has to be
achieved for variance as well as for bias squared. Setting C IoA : = glk I( ~ loA ).

this yields the condition

( 10)

Applying Stirling's formula k' = kk I 'e k(2Jd' eli 12k for some 0 < Ii < L
we see that this is equivalent to

(11 )

If we choose. e.g.. h~(I/II)112klll as after (S), we conclude that
SUPfll '-', k:s; ko and the rate of convergence of MSE becomes 11 2k.(2k + 1)

Assume now that

0< inf <".k < sup C".k <J..
n ~::j

Setting i. = k/h, we see that (11) is equivalent to

(12 )

or (13 )

and the rate of convergence of MSE IS then i.ln. Obviously, this rate is
fastest if inf"" h > O. Then we obtain the following result.

COROLLARY 2. Assume tlUlt (12) holds. Then the optimal rate of
COli vergence of the MSE is ohtained if inf" 'j h > 0 and k is chosen in such (/
way that (2k/e)2k ~n. This rate is then kin.

Assumption (12) covers a broad class of functions. Knowledge of the
behavior of the C h . k may lead to other optimal rates. The best possible rate
n I can be only achieved under the condition of Corollary [.
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An open question is how to choose the order k in practical situations. An
obvious proposal is to employ an estimator of IMSE (k, h) like cross
validation or an estimator proposed by Rice [8], minimize this w.r.t. h for
various values of k, i.e., various kernel orders, and choose the k which
yields the minimal value.
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